\(\int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\) [643]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 256 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {(A+i B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 A \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}} \]

[Out]

(A+I*B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a-b
)^(3/2)/d-(A-I*B)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(
1/2)/(I*a+b)^(3/2)/d-2*b*(A*a^2+2*A*b^2-B*a*b)/a^2/(a^2+b^2)/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)-2*A*cot
(d*x+c)^(1/2)/a/d/(a+b*tan(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {4326, 3690, 3730, 3697, 3696, 95, 209, 212} \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {2 b \left (a^2 A-a b B+2 A b^2\right )}{a^2 d \left (a^2+b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {(A+i B) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}-\frac {(A-i B) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}}-\frac {2 A \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}} \]

[In]

Int[(Cot[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c +
 d*x]])/((I*a - b)^(3/2)*d) - ((A - I*B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/((I*a + b)^(3/2)*d) - (2*b*(a^2*A + 2*A*b^2 - a*b*B))/(a^2*(a^2 + b^2)*
d*Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x]]) - (2*A*Sqrt[Cot[c + d*x]])/(a*d*Sqrt[a + b*Tan[c + d*x]])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3690

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n
 + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e +
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(
m + n + 2)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 2)*Tan[e + f*x]^2, x], x
], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& LtQ[m, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ
[a, 0])))

Rule 3696

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3697

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx \\ & = -\frac {2 A \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\left (2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {1}{2} (2 A b-a B)+\frac {1}{2} a A \tan (c+d x)+A b \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}} \, dx}{a} \\ & = -\frac {2 b \left (a^2 A+2 A b^2-a b B\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 A \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\left (4 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {1}{4} a^2 (A b-a B)+\frac {1}{4} a^2 (a A+b B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{a^2 \left (a^2+b^2\right )} \\ & = -\frac {2 b \left (a^2 A+2 A b^2-a b B\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 A \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\left ((i a+b) (A+i B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )}-\frac {\left (2 \left (\frac {1}{4} a^2 (A b-a B)-\frac {1}{4} i a^2 (a A+b B)\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{a^2 \left (a^2+b^2\right )} \\ & = -\frac {2 b \left (a^2 A+2 A b^2-a b B\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 A \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\left ((i a+b) (A+i B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d}-\frac {\left (2 \left (\frac {1}{4} a^2 (A b-a B)-\frac {1}{4} i a^2 (a A+b B)\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{a^2 \left (a^2+b^2\right ) d} \\ & = -\frac {2 b \left (a^2 A+2 A b^2-a b B\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 A \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\left ((i a+b) (A+i B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d}-\frac {\left (4 \left (\frac {1}{4} a^2 (A b-a B)-\frac {1}{4} i a^2 (a A+b B)\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{a^2 \left (a^2+b^2\right ) d} \\ & = \frac {(A+i B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 A \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.53 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.00 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {\sqrt {\cot (c+d x)} \left (\frac {\sqrt [4]{-1} a \left (\frac {(a+i b) (A-i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}-\frac {(a-i b) (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}\right ) \sqrt {\tan (c+d x)}}{a^2+b^2}-\frac {2 A}{\sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right ) \tan (c+d x)}{a \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\right )}{a d} \]

[In]

Integrate[(Cot[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(Sqrt[Cot[c + d*x]]*(((-1)^(1/4)*a*(((a + I*b)*(A - I*B)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])
/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[-a + I*b] - ((a - I*b)*(A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c
+ d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[a + I*b])*Sqrt[Tan[c + d*x]])/(a^2 + b^2) - (2*A)/Sqrt[a + b*Tan[c +
d*x]] - (2*b*(a^2*A + 2*A*b^2 - a*b*B)*Tan[c + d*x])/(a*(a^2 + b^2)*Sqrt[a + b*Tan[c + d*x]])))/(a*d)

Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 1.97 (sec) , antiderivative size = 1560397, normalized size of antiderivative = 6095.30

\[\text {output too large to display}\]

[In]

int(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x)

[Out]

result too large to display

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 18757 vs. \(2 (212) = 424\).

Time = 7.14 (sec) , antiderivative size = 18757, normalized size of antiderivative = 73.27 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \cot ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cot(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))*cot(c + d*x)**(3/2)/(a + b*tan(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*cot(d*x + c)^(3/2)/(b*tan(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*cot(d*x + c)^(3/2)/(b*tan(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((cot(c + d*x)^(3/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(3/2),x)

[Out]

int((cot(c + d*x)^(3/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(3/2), x)